3.5.48 \(\int \sec ^2(c+d x) (a+b \sec (c+d x)) \, dx\) [448]

Optimal. Leaf size=47 \[ \frac {b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {b \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

1/2*b*arctanh(sin(d*x+c))/d+a*tan(d*x+c)/d+1/2*b*sec(d*x+c)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3872, 3852, 8, 3853, 3855} \begin {gather*} \frac {a \tan (c+d x)}{d}+\frac {b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {b \tan (c+d x) \sec (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*(a + b*Sec[c + d*x]),x]

[Out]

(b*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (b*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps

\begin {align*} \int \sec ^2(c+d x) (a+b \sec (c+d x)) \, dx &=a \int \sec ^2(c+d x) \, dx+b \int \sec ^3(c+d x) \, dx\\ &=\frac {b \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} b \int \sec (c+d x) \, dx-\frac {a \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac {b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {b \sec (c+d x) \tan (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 47, normalized size = 1.00 \begin {gather*} \frac {b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {b \sec (c+d x) \tan (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*(a + b*Sec[c + d*x]),x]

[Out]

(b*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (b*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 47, normalized size = 1.00

method result size
derivativedivides \(\frac {a \tan \left (d x +c \right )+b \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(47\)
default \(\frac {a \tan \left (d x +c \right )+b \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(47\)
norman \(\frac {\frac {\left (2 a +b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {\left (2 a -b \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(96\)
risch \(-\frac {i \left (b \,{\mathrm e}^{3 i \left (d x +c \right )}-2 a \,{\mathrm e}^{2 i \left (d x +c \right )}-b \,{\mathrm e}^{i \left (d x +c \right )}-2 a \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}-\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(98\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*tan(d*x+c)+b*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c))))

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 58, normalized size = 1.23 \begin {gather*} -\frac {b {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 4 \, a \tan \left (d x + c\right )}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

-1/4*(b*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 4*a*tan(d*x +
c))/d

________________________________________________________________________________________

Fricas [A]
time = 3.58, size = 74, normalized size = 1.57 \begin {gather*} \frac {b \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - b \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(b*cos(d*x + c)^2*log(sin(d*x + c) + 1) - b*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(2*a*cos(d*x + c) +
b)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+b*sec(d*x+c)),x)

[Out]

Integral((a + b*sec(c + d*x))*sec(c + d*x)**2, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 107 vs. \(2 (43) = 86\).
time = 0.44, size = 107, normalized size = 2.28 \begin {gather*} \frac {b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

1/2*(b*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - b*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(2*a*tan(1/2*d*x + 1/2*c)
^3 - b*tan(1/2*d*x + 1/2*c)^3 - 2*a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1
)^2)/d

________________________________________________________________________________________

Mupad [B]
time = 1.48, size = 85, normalized size = 1.81 \begin {gather*} \frac {b\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (2\,a-b\right )-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a+b\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))/cos(c + d*x)^2,x)

[Out]

(b*atanh(tan(c/2 + (d*x)/2)))/d - (tan(c/2 + (d*x)/2)^3*(2*a - b) - tan(c/2 + (d*x)/2)*(2*a + b))/(d*(tan(c/2
+ (d*x)/2)^4 - 2*tan(c/2 + (d*x)/2)^2 + 1))

________________________________________________________________________________________